Realidad Aumentada

INTRODUCCIÓN.

La realidad aumentada (RA) es el término para definir una visión directa o indirecta de un entorno físico en el mundo real, cuyos elementos se combinan con elementos virtuales para la creación de una realidad mixta a tiempo real. Consiste en un conjunto de dispositivos que añaden información virtual a la información física ya existente. Esta es la principal diferencia con la realidad virtual, puesto que no sustituye la realidad física, sino que sobreimprime los datos informáticos al mundo real.

Con la ayuda de la tecnología (por ejemplo, añadiendo la visión por computador y reconocimiento de objetos) la información sobre el mundo real alrededor del usuario se convierte en interactiva y digital. La información artificial sobre el medio ambiente y los objetos pueden ser almacenada y recuperada como una capa de información en la parte superior de la visión del mundo real.

La realidad aumentada de investigación explora la aplicación de imágenes generadas por ordenador en tiempo real a secuencias de vídeo como una forma de ampliar el mundo real. La investigación incluye el uso de pantallas colocadas en la cabeza, un display virtual colocado en la retina para mejorar la visualización, y la construcción de ambientes controlados a partir sensores y actuadores.

DEFINICIONES

Hay dos definiciones comúnmente aceptadas de la Realidad Aumentada en la actualidad.

Definición de AZUMA

Uno de ellas fue dada por Ronald Azuma en 1997. La definición de Azuma dice que la realidad aumentada:

* Combina elementos reales y virtuales.
* Es interactiva en tiempo real.
* Esta registrada en 3D.

DEFINICION DE MILGRAN Y KISHINO

Además Paul Milgram y Fumio Kishino definen la realidad de Milgram-Virtuality Continuum en 1994. Que describen como un continuo que abarca desde el entorno real a un entorno virtual puro. Entre medio hay Realidad Aumentada (más cerca del entorno real) y Virtualidad Aumentada (está más cerca del entorno virtual).
Milgram's Continuum

Más recientemente, el término realidad aumentada se ha difuminado un poco debido al creciente interés por la Realidad Aumentada del público en general.

Cronología

* 1962: Morton Heilig, un director de fotografía, crea un simulador de moto llamado Sensorama con imágenes, sonido, vibración y olfato.
* 1966: Ivan Sutherland inventa la display de cabeza (HMD) lo que sugiere una ventana a un mundo virtual.
* 1975: Myron Krueger crea Videoplace que permite a los usuarios interactuar con objetos virtuales por primera vez.
* 1989: Jaron Lanier acuña el termino realidad virtual y crea la primera actividad comercial en torno a los mundos virtuales.
* 1992: Tom Caudell crea el termino Realidad Aumentada.
* 1992: Steven Feiner, Blair MacIntyre y Doree Seligmann primera utilización importante de un sistema de Realidad Aumentada en un prototipo, KARMA, presentado en la conferencia de la interfaz gráfica. Ampliamente citada en la publicación Communications of the ACM al siguiente año.
* 1999: Hirokazu Kato desarrolla ARToolKit en el HitLab y se presenta en SIGGRAPH ese año.
* 2000: Bruce H. Thomas desarrolla ARQuake, el primero juego al aire libre con dispositivos móviles de Realidad Aumentada, y se presenta en el International Symposium on Wearable Computers.
* 2008: AR Wikitude Guía sale a la venta el 20 de octubre de 2008 con el teléfono Android G1.
* 2009: AR Toolkit es portado a Adobe Flash (FLARToolkit) por Saqoosha, con lo que la realidad aumentada llega al navegador Web.

Hardware

Los dispositivos de Realidad aumentada normalmente constan de un "headset" y un sistema de display para mostrar al usuario la información virtual que se añade a la real. El "headset" lleva incorporado sistemas de GPS, necesarios para poder localizar con precisión la situación del usuario.

Los dos principales sistemas de "displays" empleados son la pantalla óptica transparente (Optical See-through Display) y la pantalla de mezcla de imágenes (Video-mixed Display). Tanto uno como el otro usan imágenes virtuales que se muestran al usuario mezcladas con la realidad o bien proyectadas directamente en la pantalla.

Los Sistemas de realidad aumentada modernos utilizan una o más de las siguientes tecnologías: cámaras digitales , sensores ópticos, acelerómetros, GPS, giroscopios, brújulas de estado sólido, RFID, etc. El Hardware de procesamiento de sonido podría ser incluido en los sistemas de realidad aumentada. Los Sistemas de cámaras basadas en Realidad Aumentada requieren de una unidad CPU potente y gran cantidad de memoria RAM para procesar imágenes de dichas cámaras. La combinación de todos estos elementos se da a menudo en los smartphones modernos, que los convierten en un posible plataforma de realidad aumentada.

Software

Para fusiones coherentes de imágenes del mundo real, obtenidas con cámara, e imágenes virtuales en 3D, las imágenes virtuales deben atribuirse a lugares del mundo real. Ese mundo real debe ser situado, a partir de imágenes de la cámara, en un sistema de coordenadas. Dicho proceso se denomina registro de imágenes. Este proceso usa diferentes métodos de visión por ordenador, en su mayoría relacionados con el seguimiento de vídeo. Muchos métodos de visión por ordenador de realidad aumentada se heredan de forma similar de los métodos de odometría visual.

Por lo general los métodos constan de dos partes. En la primera etapa se puede utilizar la detección de esquinas, la detección de Blob, la detección de bordes, de umbral y los métodos de procesado de imágenes. En la segunda etapa el sistema de coordenadas del mundo real es restaurado a partir de los datos obtenidos en la primera etapa. Algunos métodos asumen los objetos conocidos con la geometría 3D (o marcadores fiduciarios) presentes en la escena y hacen uso de esos datos. En algunos de esos casos, toda la estructura de la escena 3D debe ser calculada de antemano. Si no hay ningún supuesto acerca de la geometría 3D se estructura a partir de los métodos de movimiento. Los métodos utilizados en la segunda etapa incluyen geometria proyectiva (epipolar), paquete de ajuste, la representación de la rotación con el mapa exponencial, filtro de Kalman y filtros de partículas.

D.A.R.T. (Designer’s Augmented Reality Toolkit)

El Designer’s Augmented Reality Toolkit (DART) es un sistema de programación que fue creado por el Augmented Environments Lab, en el Georgia Institute of Technology, para ayudar a los diseñadores a visualizar la mezcla de los objetos reales y virtuales. Proporciona un conjunto de herramientas para los diseñadores: extensiones para el Macromedia Director (herramienta para crear juegos, simulaciones y aplicaciones multimedia) que permiten coordinar objetos en 3D, vídeo, sonido e información de seguimiento de objetos de Realidad Aumentada.

Técnicas de visualización

Existen tres técnicas principales para mostrar la realidad aumentada:

Display en la cabeza

Una pantalla instalada en la cabeza (HMD Head-Mounted Display) muestra tanto las imágenes de los lugares del mundo físico y social donde nos encontremos, como objetos virtuales sobre la vista actual del usuario. Los HMD son dispositivos ópticos que permiten al usuario poder ver el mundo físico a través de la lente y superponer información gráfica que se refleja en los ojos del usuario. El HMD debe ser rastreado con un sensor. Este seguimiento permite al sistema informático añadir la información virtual al mundo físico. La principal ventaja de la HMD de Realidad Aumentada es la integración de la información virtual dentro del mundo físico para el usuario. La información gráfica esta condicionada a la vista del usuario.

Display de mano

El dispositivo manual con realidad aumentada cuenta con un dispositivo informático que incorpora una pantalla pequeña que cabe en la mano de un usuario. Todas las soluciones utilizadas hasta la fecha por los diferentes dispositivos de mano han empleado técnicas de superposición sobre el video con la información gráfica. Inicialmente los dispositivos de mano empleaban sensores de seguimiento tales como brújulas digitales y GPS que añadían marcadores al video. Mas tarde el uso de sistemas, como ARToolKit, nos permitían añadir información digital a las secuencias de video en tiempo real. Hoy en día los sistemas de visión como SLAM o PTAM son empleados para el seguimiento. El display de mano promete ser el primer éxito comercial de las tecnologías de Realidad Aumentada. Sus dos principales ventajas son el carácter portátil de los dispositivos de mano y la posibilidad de ser aplicada en los teléfonos con cámara.

Display espacial

La Realidad Aumentada espacial (SAR) hace uso de proyectores digitales para mostrar información gráfica sobre los objetos físicos. La diferencia clave es que la pantalla está separada de los usuarios del sistema. Debido a que el display no está asociado a cada usuario, permite a los grupos de usuarios, utilizarlo a la vez y coordinar el trabajo entre ellos. SAR tiene varias ventajas sobre el tradicional display colocado en la cabeza y sobre dispositivos de mano. El usuario no está obligado a llevar el equipo encima ni a someterse al desgaste de la pantalla sobre los ojos. Esto hace del display espacial un buen candidato para el trabajo colaborativo, ya que los usuarios pueden verse las caras. El display espacial no esta limitado por la resolución de la pantalla, que si que afecta a los dispositivos anteriores. Un sistema de proyección permite incorporar más proyectores para ampliar el área de visualización. Los dispositivos portátiles tienen una pequeña ventana al mundo para representar la información virtual, en cambio en un sistema SAR puedes mostrar un mayor número de superficies virtuales a la vez en un entorno interior. Es una herramienta útil para el diseño, ya que nos permite visualizar una realidad que es tangible de forma pasiva

Aplicaciones

La Realidad Aumentada ofrece infinidad de nuevas posibilidades de interacción, que hacen que esté presente en muchos y varios ámbitos, como son la arquitectura, el entretenimiento, la educación, el arte, la medicina o las comunidades virtuales.

* Proyectos educativos:

Actualmente la mayoría de aplicaciones de Realidad Aumentada para proyectos educativos se usan en museos, exhibiciones, parques de atracciones temáticos… puesto que su coste todavía no es suficientemente bajo para que puedan ser empleadas en el ámbito doméstico. Estos lugares aprovechan las conexiones wireless para mostrar información sobre objetos o lugares, así como imágenes virtuales como por ejemplo ruinas reconstruidas o paisajes tal y como eran en el pasado.

* Cirugía:

La aplicación de Realidad Aumentada en operaciones permite al cirujano superponer datos visuales como por ejemplo termografías o la delimitación de los bordes limpios de un tumor, invisibles a simple vista, minimizando el impacto de la cirugía.

* Entretenimiento:

Teniendo en cuenta que el de los juegos es un mercado que mueve unos 30.000 millones de dólares al año en los Estados Unidos, es comprensible que se esté apostando mucho por la Realidad Aumentada en este campo puesto que ésta puede aportar muchas nuevas posibilidades a la manera de jugar. Una de las puestas en escena más representativas de la Realidad aumentada es el "Can You See Me Now?", *[1] de Blast Theory [2]. Es un juego on-line de persecución por las calles donde los jugadores empiezan en localizaciones aleatorias de una ciudad, llevan un ordenador portátil y están conectados a un receptor de GPS. El objetivo del juego es procurar que otro corredor no llegue a menos de 5 metros de ellos, puesto que en este caso se les hace una foto y pierden el juego. La primera edición tuvo lugar en Sheffield pero después se repitió en otras muchas ciudades europeas. Otro de los proyectos con más éxito es el ARQuake Project, donde se puede jugar al videojuego Quake en exteriores, disparando contra monstruos virtuales. A pesar de estas aproximaciones, todavía es difícil obtener beneficios del mercado de los juegos puesto que el hardware es muy costoso y se necesitaría mucho tiempo de uso para amortizarlo.

* Simulación:

Se puede aplicar la Realidad Aumentada para simular vuelos y trayectos terrestres.

* Servicios de emergencias y militares:

En caso de emergencia la Realidad Aumentada puede servir para mostrar instrucciones de evacuación de un lugar. En el campo militar, puede mostrar información de mapas, localización de los enemigos…

* Arquitectura:

La Realidad Aumentada es muy útil a la hora de resucitar virtualmente edificios históricos destruidos, así como proyectos de construcción que todavía están bajo plano.

* Apoyo con tareas complejas:

tareas complejas, como el montaje, mantenimiento, y la cirugía pueden simplificarse mediante la inserción de información adicional en el campo de visión. Por ejemplo, para un mecánico que está realizando el mantenimiento de un sistema, las etiquetas pueden mostrar las partes del mismo para aclarar su funcionamiento. La Realidad Aumentada puede incluir imágenes de los objetos ocultos, que pueden ser especialmente eficaces para el diagnóstico médico o la cirugía. Como por ejemplo una radiografía de rayos vista virtualmente basada en la tomografía previa o en las imágenes en tiempo real de los dispositivos de ultrasonido o resonancia magnética nuclear abierta.

* Los dispositivos de navegación:

AR puede aumentar la eficacia de los dispositivos de navegación para una variedad de aplicaciones. Por ejemplo, la navegación dentro de un edificio puede ser mejorada con el fin de dar soporte al encargado del mantenimiento de instalaciones industriales. Las Lunas delanteras de los automóviles pueden ser usadas como Pantallas de visualización frontal para proporcionar indicaciones de navegación y información de tráfico.

* Aplicaciones Industriales:

La realidad aumentada puede ser utilizada para comparar los datos digitales de las maquetas físicas con su referente real para encontrar de manera eficiente discrepancias entre las dos fuentes. Además, se pueden emplear para salvaguardar los datos digitales en combinación con prototipos reales existentes, y así ahorrar o reducir al mínimo la construcción de prototipos reales y mejorar la calidad del producto final.

* Prospección:

En los campos de la hidrología, la ecología y la geología, la AR puede ser utilizada para mostrar un análisis interactivo de las características del terreno. El usuario puede utilizar, modificar y analizar, tres mapas bidimensionales interactivos.

* Colaboración:

La realidad aumentada puede ayudar a facilitar la colaboración entre los miembros de un equipo a través de conferencias con los participantes reales y virtuales.

* Publicidad:

Una de las ultimas aplicaciones de la realidad aumentada es la publicidad. Hay diferentes campañas que utilizan este recurso para llamar la atencion de el usuario.

Fiat ha lanzado una campaña en la que cualquier usuario puede crear su propio anuncio de television con el Fiat 500 como protagonista a traves de la pagina web, el usuario solo necesita tener una webcam.

La revista Esquirre publica en la edición de diciembre del 2009 diferentes codigos QR (Quick Response), que son una variante más potente de los codigos de barras que pueden ser escaneados por una webcam que en reconocerlos nos ofrece información extra sobre el producto. Los codigos QR que incorpora la revista son reconocidos por las webcams de los usuarios y en ser reconocidos activan un video superpuesto a la imagen de la webcam. Para poder interpretarlos se necesita un sofware especifico.

Aplicaciones futuras

La Realidad Aumentada debe tener mas esjempls de español modelos informáticos de lugares y sonidos relacionados con la realidad física, así como determinar la situación exacta de cada usuario, y ser capaz de mostrar al usuario una representación realista del entorno que se ha añadido virtualmente. Es muy importante determinar la orientación y posición exacta del usuario, sobre todo en las aplicaciones que así lo requieran: uno de los retos más importante que se tiene a la hora de desarrollar proyectos de Realidad Aumentada es que los elementos visuales estén coordinados a la perfección con los objetos reales, puesto que un pequeño error de orientación puede provocar un desalineamiento perceptible entre los objetos virtuales y físicos. En zonas muy amplias los sensores de orientación usan magnetómetros, inclinómetros, sensores inerciales… que pueden verse afectados gravemente por campos magnéticos, y por lo tanto se ha de intentar reducir al máximo este efecto. Sería interesante que una aplicación de Realidad Aumentada pudiera localizar elementos naturales (como árboles o rocas) que no hubieran sido catalogados previamente, sin que el sistema tuviera que tener un conocimiento previo del territorio. Como reto a largo plazo es posible sugerir el diseño de aplicaciones en los que la realidad aumentada fuera un poco más allá, lo que podemos llamar "realidad aumentada retroalimentada", esto es, que la "descoordinación" resultante del uso de sensores de posición/orientación, fuera corregida midiendo las desviaciones entre las medidas de los sensores y las del mundo real. Imagina un sistema de realidad aumentada que partiendo de pares de imágenes estéreo obtenidas de dos cámaras solidarias al usuario (head-mounted) y de la posición del mismo, fuera capaz de determinar la posición y orientación exacta del que mira.

Es importante señalar que la realidad aumentada es un desarrollo costoso de la tecnología. Debido a esto, el futuro de la RA depende de si esos costos se pueden reducir de alguna manera. Si la tecnología RA se hace asequible, podría ser muy amplia, pero por ahora las principales industrias son los únicos compradores que tienen la oportunidad de utilizar este recurso. En el futuro podríamos encontrar aplicaciones de este estilo:

* Aplicaciones de multimedia mejoradas, como pseudo pantallas holográficas virtuales, sonido envolvente virtual de cine, "holodecks" virtuales (que permiten imágenes generadas por ordenador para interactuar con artistas en vivo y la audiencia).
* Conferencias virtuales en estilo "holodeck".
* Sustitución de teléfonos celulares y pantallas de navegador de coche: inserción de la información directamente en el medio ambiente. Por ejemplo, las líneas de guía directamente en la carretera.
* Plantas virtuales, fondos de escritorio, vistas panorámicas, obras de arte, decoración, iluminación, etc, la mejora de la vida cotidiana.
* Con los sistemas de RA se puede entrar en el mercado de masas, viendo los letreros virtualmente, carteles, señales de tráfico, las decoraciones de Navidad, las torres de publicidad y mucho más. Éstos pueden ser totalmente interactivos, incluso a distancia.
* Cualquier dispositivo físico que actualmente se produce para ayudar en tareas orientadas a datos (como el reloj, la radio, PC, fecha de llegada / salida de un vuelo, una cotización, PDA, carteles informativos / folletos, los sistemas de navegación para automóviles, etc.) podrían ser sustituidos por dispositivos virtuales.

Software libre para Realidad Aumentada

* ARToolKit Libreria GNU GPL que permite la creación de aplicaciones de realidad aumentada, desarrollado originalmente por Hirokazu Kato en 1999[1] y fue publicado por el HIT Lab de la Universidad de Washington. Actualmente se mantiene como un proyecto de código abierto alojado en SourceForge con licencias comerciales disponibles en ARToolWorks..

* ATOMIC Authoring Tool - es un software Multi-plataforma para la creación de aplicaciones de realidad aumentada, el cual es un Front_end para la librería ARToolKit. Fue Desarrollado para no-programadores, y permite crear rápidamente, pequeñas y sencillas aplicaciones de Realidad Aumentada. Está licenciado bajo la Licencia GNU GPL

Libros

* Woodrow Barfield, y Thomas Caudell, eds. Fundamentos de Informática usable y Realidad Aumentada. Mahwah, NJ: Lawrence Erlbaum, 2001. ISBN 0805829016.
* Oliver Bimber y Ramesh Raskar. Realidad Aumentada espacial: Real Fusión y los mundos virtuales. AK Peters, 2005. ISBN 1568812302.
* Michael Haller, Mark Billinghurst y Bruce Thomas. Tecnologías Emergentes de la Realidad Aumentada: Interfaces y Diseño. Idea Group Publishing, 2006. ISBN 1599040662, editor de revistas
* Rolf R. Hainich. "El fin de Hardware: Un nuevo enfoque a la realidad aumentada", 2 ª ed.: Booksurge, 2006. ISBN 1419652184. 3 ª ed. ( "Realidad Aumentada y más allá"): Booksurge, 2009, ISBN 1-4392-3602-X.
* Stephen Cawood y Mark Fiala. "Realidad Aumentada: A Practical Guide", 2008, ISBN 1934356034

El contenido de esta entrada está basado en la entrada de la Wikipedia en español "Realidad Aumentada".

Bibliography
1. Kato, H., Billinghurst, M. "Marker tracking and hmd calibration for a video-based augmented reality conferencing system.",In Proceedings of the 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR 99), October 1999.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License